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ABSTRACT !

We present the design, implementation, and evaluation of
post-copy based live migration for virtual machines (VMs)
across a Gigabit LAN. Post-copy migration defers the trans-
fer of a VM’s memory contents until after its processor state
has been sent to the target host. This deferral is in contrast
to the traditional pre-copy approach, which first copies the
memory state over multiple iterations followed by a final
transfer of the processor state. The post-copy strategy can
provide a “win-win” by reducing total migration time while
maintaining the liveness of the VM during migration. We
compare post-copy extensively against the traditional pre-
copy approach on the Xen Hypervisor. Using a range of VM
workloads we show that post-copy improves several metrics
including pages transferred, total migration time, and net-
work overhead. We facilitate the use of post-copy with adap-
tive prepaging techniques to minimize the number of page
faults across the network. We propose different prepaging
strategies and quantitatively compare their effectiveness in
reducing network-bound page faults. Finally, we eliminate
the transfer of free memory pages in both pre-copy and post-
copy through a dynamic self-ballooning (DSB) mechanism.
DSB periodically reclaims free pages from a VM and sig-
nificantly speeds up migration with negligible performance
impact on VM workload.
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1. INTRODUCTION

This paper addresses the problem of optimizing the live
migration of system virtual machines (VMs). Live migra-
tion is a key selling point for state-of-the-art virtualization
technologies. It allows administrators to consolidate system
load, perform maintenance, and flexibly reallocate cluster-
wide resources on-the-fly. We focus on VM migration within

LA shorter version of this paper appeared in the ACM SIG-
PLAN/SIGOPS International Conference on Virtual Exe-
cution Environments (VEE), March 2009 [11]. The addi-
tional contributions of this paper are new prepaging strate-
gies including dual-direction and multi-pivot bubbling (Sec-
tion 3.2), proactive LRU ordering of pages (Section 4.3), and
their evaluation (Section 5.4).

a cluster environment where physical nodes are intercon-
nected via a high-speed LAN and also employ a network-
accessible storage system. State-of-the-art live migration
techniques [19, 3] use the pre-copy approach which works as
follows. The bulk of the VM’s memory state is migrated
to a target node even as the VM continues to execute at a
source node. If a transmitted page is dirtied, it is re-sent
to the target in the next round. This iterative copying of
dirtied pages continues until either a small, writable work-
ing set (WWS) has been identified, or a preset number of
iterations is reached, whichever comes first. This constitutes
the end of the memory transfer phase and the beginning of
service downtime. The VM is then suspended and its pro-
cessor state plus any remaining dirty pages are sent to a
target node, where the VM is restarted.

Pre-copy’s overriding goal is to keep downtime small by
minimizing the amount of VM state that needs to be trans-
ferred during downtime. Pre-copy will cap the number of
copying iterations to a preset limit since the WWS is not
guaranteed to converge across successive iterations. On the
other hand, if the iterations are terminated too early, then
the larger WWS will significantly increase service down-
time. Pre-copy minimizes two metrics particularly well —
VM downtime and application degradation — when the VM
is executing a largely read-intensive workload. However,
even moderately write-intensive workloads can reduce pre-
copy’s effectiveness during migration because pages that are
repeatedly dirtied may have to be transmitted multiple times.

In this paper, we propose and evaluate the postcopy strat-
egy for live VM migration, previously studied only in the
context of process migration. At a high-level, post-copy
migration defers the memory transfer phase until after the
VM’s CPU state has already been transferred to the target
and resumed there. Post-copy first transmits all processor
state to the target, starts the VM at the target, and then ac-
tively pushes the VM’s memory pages from source to target.
Concurrently, any memory pages that are faulted on by the
VM at target, and not yet pushed, are demand-paged over
the network from source. Post-copy thus ensures that each
memory page is transferred at most once, thus avoiding the
duplicate transmission overhead of pre-copy.

Effectiveness of post-copy depends on the ability to mini-
mize the number of network-bound page-faults (or network
faults), by pushing the pages from source before they are
faulted upon by the VM at target. To reduce network faults,
we supplement the active push component of post-copy with
adaptive prepaging. Prepaging is a term borrowed from ear-
lier literature [22, 32] on optimizing memory-constrained



disk-based paging systems. It traditionally refers to a more
proactive form of pre-fetching from storage devices (such
as hard disks) in which the memory subsystem can try to
hide the latency of high-locality page faults by intelligently
sequencing the pre-fetched pages. Modern virtual memory
subsystems do not typically employ prepaging due increas-
ing DRAM capacities. Although post-copy doesn’t deal with
disk-based paging, the prepaging algorithms themselves can
still play a helpful role in reducing the number of network
faults in post-copy. Prepaging adapts the sequence of ac-
tively pushed pages by using network faults as hints to pre-
dict the VM’s page access locality at the target and actively
push the pages in the neighborhood of a network fault be-
fore they are accessed by the VM. We propose and compare
a number of prepaging strategies for post-copy, which we
call bubbling, that reduce the number of network faults to
varying degrees.

Additionally, we identified a deficiency in both pre-copy
and post-copy migration due to which free pages in the VM
are also transmitted during migration, increasing the total
migration time. To avoid transmitting the free pages, we
develop a “dynamic self-ballooning” (DSB) mechanism. Bal-
looning is an existing technique that allows a guest kernel
to reduce its memory footprint by releasing its free memory
pages back to the hypervisor. DSB automates the balloon-
ing mechanism so it can trigger periodically (say every 5 sec-
onds) without degrading application performance. Our DSB
implementation reacts directly to kernel memory allocation
requests without the need for guest kernel modifications. It
neither requires external introspection by a co-located VM
nor excessive communication with the hypervisor. We show
that DSB significantly reduces total migration time by elim-
inating the transfer of free memory pages in both pre-copy
and post-copy.

The original pre-copy algorithm has advantages of its own.
It can be implemented in a relatively self-contained external
migration daemon to isolate most of the copying complexity
to a single process at each node. Further, pre-copy also pro-
vides a clean way to abort the migration should the target
node ever crash during migration because the VM is still
running at the source. (Source node failure is fatal to both
migration schemes.) Although our current post-copy im-
plementation cannot recover from failure of the target node
during migration, we discuss approaches in Section 3.4 by
which post-copy could potentially provide the same level of
reliability as pre-copy.

We designed and implemented a prototype of the post-

copy live VM migration in the Xen VM environment. Through

extensive evaluations, we demonstrate situations in which
post-copy can significantly improve performance in terms of
total migration time and pages transferred. We note that
post-copy and pre-copy complement each other in the tool-
box of VM migration techniques available to a cluster ad-
ministrator. Depending upon the VM workload type and
performance goals of migration, an administrator has the
flexibility to choose either of the techniques. For VMs with
read-intensive workloads, pre-copy would be the better ap-
proach whereas for large-memory or write-intensive work-
loads, post-copy would better suited. Our main contribu-
tion is in demonstrating that a post-copy based approach is
practical for live VM migration and to evaluate its merits
and drawbacks against the pre-copy approach.

2. RELATED WORK

Process Migration: The post-copy technique has been
variously studied in the context of process migration lit-
erature: first implemented as “Freeze Free” using a file-
server [26], then evaluated via simulations [25], and later via
actual Linux implementation [20]. There was also a recent
implementation of post-copy process migration under open-
Mosix [12]. In contrast, our contributions are to develop a
viable post-copy technique for live migration of virtual ma-
chines. Process migration techniques in general have been
extensively researched and an excellent survey can be found
n [17]. Several distributed computing projects incorporate
process migration [31, 24, 18, 30, 13, 6]. However, these
systems have not gained widespread acceptance primarily
because of portability and residual dependency limitations.
In contrast, VM migration operates on whole operating sys-
tems and is naturally free of these problems.

PrePaging: Prepaging is a technique for hiding the la-
tency of page faults (and in general I/O accesses in the crit-
ical execution path) by predicting the future working set [5]
and loading the required pages before they are accessed.
Prepaging is also known as adaptive prefetching or adap-
tive remote paging. It has been studied extensively [22, 33,
34, 32] in the context of disk based storage systems, since
disk I/O accesses in the critical application execution path
can be highly expensive. Traditional prepaging algorithms
use reactive and history based approaches to predict and
prefetch the working set of the application. Our system em-
ploys prepaging, not in the context of disk prefetching, but
for the limited duration of live VM migration to avoid the
latency of network page faults from target to source. Our
implementation employs a reactive approach that uses any
network faults as hints about the VM’s working set with
additional optimizations described in Section 3.1.

Live VM Migration. Pre-copy is the predominant ap-
proach for live VM migration. These include hypervisor-
based approaches from VMware [19], Xen [3], and KVM [14],
OS-level approaches that do not use hypervisors from OpenVZ
[21], as well as wide-area migration [2]. Self-migration of op-
erating systems (which has much in common with process
migration) was implemented in [9] building upon prior work
[8] atop the L4 Linux microkernel. All of the above sys-
tems currently use pre-copy based migration and can poten-
tially benefit from the approach in this paper. The closest
work to our technique is SnowFlock [15]. This work sets up
impromptu clusters to support highly parallel computation
tasks across VMs by cloning the source VM on the fly. This
is optimized by actively pushing cloned memory via multi-
cast from the source VM. They do not target VM migra-
tion in particular, nor present a comprehensive comparison
against (or optimize upon) the original pre-copy approach.

Non-Live VM Migration. There are several non-live
approaches to VM migration. Schmidt [29] proposed us-
ing capsules, which are groups of related processes along
with their IPC/network state, as migration units. Similarly,
Zap [23] uses process groups (pods) along with their ker-
nel state as migration units. The Denali project [37, 36]
addressed migration of checkpointed VMs. Work in [27] ad-
dressed user mobility and system administration by encap-
sulating the computing environment as capsules to be trans-
ferred between distinct hosts. Internet suspend/resume [28]
focuses on saving/restoring computing state on anonymous
hardware. In all the above systems, the VM execution sus-



pended and applications do not make progress.

Dynamic Self-Ballooning (DSB): Ballooning refers to
artificially requesting memory within a guest kernel and re-
leasing that memory back to the hypervisor. Ballooning
is used widely for the purpose of VM memory resizing by
both VMWare [35] and Xen [1], and relates to self-paging in
Nemesis [7]. However, it is not clear how current ballooning
mechanisms interact, if at all, with live VM migration tech-
niques. For instance, while Xen is capable of simple one-time
ballooning during migration and system boot time, there is
no explicit use of dynamic ballooning to reduce the memory
footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree [16]
to enable a guest kernel to dynamically return free mem-
ory to the hypervisor without explicit human intervention.
VMWare ESX server [35] includes dynamic ballooning and
idle memory tax, but the focus is not on reducing the VM
footprint before migration. Our DSB mechanism is simi-
lar in spirit to the above dynamic ballooning approaches.
However, to the best of our knowledge, DSB has not been
exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the
migration performance of both the pre-copy and post-copy
approaches with minimal runtime overhead.

3. DESIGN

In this section we present the design of post-copy live VM
migration. The performance of any live VM migration strat-
egy could be gauged by the following metrics.

1. Preparation Time: This is the time between initi-
ating migration and transferring the VM’s processor
state to the target node, during which the VM con-
tinues to execute and dirty its memory. For pre-copy,
this time includes the entire iterative memory copying
phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating
VM’s execution is stopped. At the minimum this in-
cludes the transfer of processor state. For pre-copy,
this transfer also includes any remaining dirty pages.
For post-copy this includes other minimal execution
state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming
the VM'’s execution at the target and the end of migra-
tion altogether, at which point all dependencies on the
source must be eliminated. For pre-copy, one needs
only to re-schedule the target VM and destroy the
source copy. On the other hand, majority of our post-
copy approach operates in this period.

4. Pages Transferred: This is the total count of mem-
ory pages transferred, including duplicates, across all
of the above time periods. Pre-copy transfers most of
its pages during preparation time, whereas post-copy
transfers most during resume time.

5. Total Migration Time: This is the sum of all the
above times from start to finish. Total time is impor-
tant because it affects the release of resources on both
participating nodes as well as within the VMs on both
nodes. Until the completion of migration, we cannot
free the source VM’s memory.

6. Application Degradation: This is the extent to
which migration slows down the applications running
in the VM. Pre-copy must track dirtied pages by trap-

ping write accesses to each page, which significantly
slows down write-intensive workloads. Similarly, post-
copy needs to service network faults generated at the
target, which also slows down VM workloads.

3.1 Post-Copy and its Variants

In the basic approach, post-copy first suspends the mi-
grating VM at the source node, copies minimal processor
state to the target node, resumes the virtual machine, and
begins fetching memory pages over the network from the
source. The manner in which pages are fetched gives rise
to different variants of post-copy, each of which provides in-
cremental improvements. We employ a combination of four
techniques to fetch memory pages from the source: demand-
paging, active push, prepaging, and dynamic self-ballooning
(DSB). Demand paging ensures that each page is sent over
the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, ac-
tive push ensures that residual dependencies are removed
from the source host as quickly as possible, compared to the
non-deterministic copying iterations in pre-copy. Prepaging
uses hints from the VM’s page access patterns to reduce
both the number of major network faults and the duration
of the resume phase. DSB reduces the number of free pages
transferred during migration, improving the performance of
both pre-copy and post-copy. Figure 1 provides a high-level
contrast of how different stages of pre-copy and post-copy
relate to each other. Table 1 contrasts different migration
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Figure 1: Timeline for Pre-copy vs. Post-copy.

techniques, each of which is described below in detail.
Post-Copy via Demand Paging: The demand paging
variant of post-copy is the simplest and slowest option. Once
the VM resumes at the target, its memory accesses result in
page faults that can be serviced by requesting the referenced
page over the network from the source node. However, ser-
vicing each fault will significantly slow down the VM due to
the network’s round trip latency. Consequently, even though
each page is transferred only once, this approach consider-
ably lengthens the resume time and leaves long-term residual
dependencies in the form of unfetched pages, possibly for an
indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable from the view-
point of total migration time and application degradation.



Preparation | Downtime Resume
1. Pre-copy Iterative CPU + dirty | Reschedule
Only mem txfer mem txfer VM
2. Demand- Prep time CPU + Net. page
Paging (if any) minimal state | faults only
3. Pushing + Prep time CPU + Active push
Demand (if any) minimal state | +page faults
4. Prepaging Prep time CPU + Bubbling +
+ Demand | (if any) minimal state | page faults
5. Hybrid Single copy CPU + Bubbling +
(all) round minimal state | dirty faults

Table 1: Design choices for live VM migration, in the
order of their incremental improvements. Method 4
combines methods 2 and 3 with the use of prepaging.
Method 5 combines all of 1 through 4, with pre-copy
only performing a single copy round.

Post-Copy via Active Pushing: One way to reduce
the duration of residual dependencies on the source node is
to proactively “push” the VM’s pages from the source to the
target even as the VM continues executing at the target.
Any major faults incurred by the VM can be serviced con-
currently over the network via demand paging. Active push
avoids transferring pages that have already been faulted in
by the target VM. Thus, each page is transferred only once,
either by demand paging or by an active push.

Post-Copy via Prepaging: The goal of post-copy via
prepaging is to anticipate the occurrence of major faults in
advance and adapt the page pushing sequence to better re-
flect the VM’s memory access pattern. While it is impossible
to predict the VM’s exact faulting behavior, our approach
works by using the faulting addresses as hints to estimate
the spatial locality of the VM’s memory access pattern. The
prepaging component then shifts the transmission window
of the pages to be pushed such that the current page fault
location falls within the window. This increases the proba-
bility that pushed pages would be the ones accessed by the
VM in the near future, reducing the number of major faults.
Various prepaging strategies are described in Section 3.2.

Hybrid Live Migration: The hybrid approach was first
described in [20] for process migration. It works by doing
a single pre-copy round in the preparation phase of the mi-
gration. During this time, the VM continues running at the
source while all its memory pages are copied to the target
host. After just one iteration, the VM is suspended and
its processor state and dirty non-pageable pages are copied
to the target. Subsequently, the VM is resumed at tar-
get and post-copy described above kicks in, pushing in the
remaining dirty pages from the source. As with pre-copy,
this scheme can perform well for read-intensive workloads.
Yet it also provides deterministic total migration time for
write-intensive workloads, as with post-copy. This hybrid
approach is currently being implemented and not covered
within the scope of this paper. Rest of this paper describes
the design and implementation of post-copy via prepaging.

3.2 Prepaging Strategy

Prepaging refers to actively pushing the VM'’s pages from
the source to the target. The goal is to make pages available
at the target before they are faulted on by the running VM.

. let N
. let pagel[N]

1 total # of pages in VM
2

3. let bitmap[N]

4

set of all VM pages
all zeroes

. let pivot := 0; bubble := 0 // place pivot at the start
5. ActivePush (Guest VM)
6 while bubble < max (pivot, N-pivot) do
7. let left := max(0, pivot - bubble)
8. let right := min(MAX_PAGE_NUM-1, pivot + bubble)
9. if bitmap[left] == 0 then
10. set bitmap[left] := 1
11. queue pagel[left] for transmission
12. if bitmap[right] == 0 then
13. set bitmap[right] := 1
14. queue pagel[right] for transmission
15. bubble++

16. PageFault (Guest-page X)
17. if bitmap[X] == O then

18. set bitmap[X] := 1
19. transmit page[X] immediately
20. set pivot := X // shift prepaging pivot

21. set bubble := 1 // new prepaging window

Figure 2: Pseudo-code for the Bubbling algorithm
with a single pivot. Synchronization and locking
code are omitted for clarity.
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Figure 3: Prepaging strategies: (a) Bubbling with
single pivot and (b) Bubbling with multiple piv-
ots. Each pivot represents the location of a network
fault on the in-memory pseudo-paging device. Pages
around the pivot are actively pushed to target.

The effectiveness of prepaging is measured by the percentage
of VM’s page faults at the target that require an explicit
page request to be sent over the network to the source node
— also called network page faults. The smaller the percentage
of network page faults, the better the prepaging algorithm.
The challenge in designing an effective prepaging strategy is
to accurately predict the pages that might be accessed by the
VM in the near future, and to push those pages before the
VM faults upon them. Below we describe different design
options for prepaging strategies.

(A) Bubbling with a Single Pivot: Figure 2 lists the
pseudo-code for the two components of bubbling with a sin-
gle pivot — active push (lines 5-15), which executes in a ker-
nel thread, and page fault servicing (lines 16-21), which exe-
cutes in the interrupt context whenever a page-fault occurs.
Figure 3(a) illustrates this algorithm graphically. The VM’s
pages at source are kept in an in-memory pseudo-paging de-
vice, which is similar to a traditional swap device except that
it resides completely in memory (see Section 4 for details).
The active push component starts from a pivot page in the
pseudo-paging device and transmits symmetrically located



pages around that pivot in each iteration. We refer to this
algorithm as “bubbling” since it is akin to a bubble that
grows around the pivot as the center. Even if one edge of
the bubble reaches the boundary of pseudo-paging device
(0 or MAX), the other edge continues expanding in the
opposite direction. To start with, the pivot is initialized to
the first page in the in-memory pseudo-paging device, which
means that initially the bubble expands only in the forward
direction. Subsequently, whenever a network page fault oc-
curs, the fault servicing component shifts the pivot to the
location of the new fault and starts a new bubble around
this new location. In this manner, the location of the pivot
adapts to new network faults in order to exploit the spatial
locality of reference. Pages that have already been transmit-
ted (as recorded in a bitmap) are skipped over by the edge
of the bubble. Network faults that arrive at the source for a
page that is in-flight (or just been pushed) to the target are
ignored to avoid duplicate page transmissions.

(B) Bubbling with Multiple Pivots: Consider the
situation where a VM has multiple processes executing con-
currently. Here, a newly migrated VM would fault on pages
at multiple locations in the pseudo-paging device. Conse-
quently, a single pivot would be insufficient to capture the
locality of reference across multiple processes in the VM.
To address this situation, we extend the bubbling algorithm
described above to operate on multiple pivots. Figure 3(b)
illustrates this algorithm graphically. The algorithm is sim-
ilar to the one outlined in Figure 2, except that the active
push component pushes pages from multiple “bubbles” con-
currently. (We omit the pseudo-code for space constraints,
since it is a straightforward extension of single pivot case.)

Each bubble expands around an independent pivot. When-
ever a new network fault occurs, the faulting location is
recorded as one more pivot and a new bubble is started
around that location. To save on unnecessary page trans-
missions, if the edge of a bubble comes across a page that is
already transmitted, that edge stops progressing in the cor-
responding direction. For example, the edges between bub-
bles around pivots P2 and P3 stop progressing when they
meet, although the opposite edges continue making progress.
In practice, it is sufficient to limit the number of concurrent
bubbles to those around k most recent pivots. When new
network faults arrives, we replace the oldest pivot in a pivot
array with the new network fault location. For the work-
loads tested in our experiments in Section 5, we found that
around k = 7 pivots provided the best performance.

(C) Direction of Bubble Expansion: We also wanted
to examine whether the pattern in which the source node
pushes the pages located around the pivot made a signifi-
cant difference in performance. In other words, is it better
to expand the bubble around a pivot in both directions, or
only the forward direction, or only the backward direction?
To examine this we included an option of turning off the
bubble expansion in either the forward or the backward di-
rection. Our results, detailed in Section 5.4, indicate that
forward bubble expansion is essential, dual (bi-directional)
bubble expansion performs slightly better in most cases, and
backwards-only bubble expansion is counter-productive.

When expanding bubbles with multiple pivots in only a
single direction (forward-only or backward-only), there is a
possibility that the entire active push component could stall
before transmitting all pages in the pseudo-paging device.
This happens when all active bubble edges encounter already

sent-pages at their edges and stop progressing. (A simple
thought exercise can show that stalling of active push is not
a problem for dual-direction multi-pivot bubbling.) While
there are multiple ways to solve this problem, we chose a
simple approach of designating the initial pivot (at the first
page in pseudo-paging device) as a sticky pivot. Unlike other
pivots, this sticky pivot is never replaced by another pivot.
Further, the bubble around sticky pivot does not stall when
it encounters an already transmitted page; rather it skips
such a page and keeps progressing, ensuring that the active
push component never stalls.

3.3 Dynamic Self-Ballooning

Before migration begins, a VM will have an arbitrarily
large number of free, unallocated pages. Transferring these
pages would be a waste of network and CPU resources, and
would increase the total migration time regardless of which
migration algorithm we use. Further, if a free page is allo-
cated by the VM during a post-copy migration and subse-
quently causes a major fault (due to a copy-on-write by the
virtual memory subsystem), fetching that free page over the
network, only to be overwritten immediately, will result in
unnecessary execution delay for the VM at the target. Thus,
it is highly desirable to avoid transmitting free pages. Bal-
looning [35] is a minimally intrusive technique for resizing
the memory allocation of a VM (called a reservation). Typ-
ical ballooning implementations involve a balloon driver in
the guest kernel. The balloon driver can either reclaim pages
considered least valuable by the OS and return them back
to the hypervisor (inflating the balloon), or request pages
from the hypervisor and return them back to the guest ker-
nel (deflating the balloon). As of this writing, Xen-based
ballooning is primarily used during the initialization of a
new VM. If the hypervisor cannot reserve enough memory
for a new VM, it steals unused memory from other VMs
by inflating their balloons to accommodate the new VM.
The system administrator can re-enlarge those diminished
reservations at a later time should more memory become
available. We extend Xen’s ballooning mechanism to avoid
transmitting free pages during both pre-copy and post-copy
migration. The VM performs ballooning continuously over
its execution lifetime — a technique we call Dynamic Self-
Ballooning (DSB). DSB reduces the number of free pages
without significantly impacting the normal execution of the
VM, so that the VM can be migrated quickly with a minimal
memory footprint. Our DSB design responds dynamically
to VM memory pressure by inflating the balloon under low
pressure and deflating under increased pressure. For DSB to
be both effective and minimally intrusive, we must choose
an appropriate interval between consecutive invocations of
ballooning such that DSB’s activity does not interfere with
the execution of VM’s applications. Secondly, DSB must
ensure that the balloon can shrink when one or more appli-
cations becomes memory-intensive. We describe the specific
implementation details of DSB in Section 4.2.

3.4 Rédliability

Either the source or destination node can fail during mi-
gration. In both pre-copy and post-copy, failure of the source
node implies permanent loss of the VM itself. Failure of the
destination node has different implications in the two cases.
For pre-copy, failure of the destination node does not matter
because the source node still holds an entire up-to-date copy



of the VM’s memory and processor state and the VM can
be revived if necessary from this copy. However, when post-
copy is used, the destination node has more up-to-date copy
of the virtual machine and the copy at the source happens
to be stale, except for pages not yet modified at the destina-
tion. Thus, failure of the destination node during post-copy
migration constitutes a critical failure of the VM. Although
our current post-copy implementation does not address this
drawback, we plan to address this problem by developing a
mechanism to incrementally checkpoint the VM state from
the destination node back at the source node. Our approach
is as follows: while the active push of pages is in progress,
we also propagate incremental changes to memory and the
VM’s execution state at the destination back to the source
node. We do not need to propagate the changes from the
destination on a continuous basis, but only at discrete points
such as when interacting with a remote client over the net-
work, or committing an I/O operation to the storage. This
mechanism can provide a consistent backup image at the
source node that one can fall back upon in case the desti-
nation node fails in the middle of post-copy migration. The
performance of this mechanism would depend upon the ad-
ditional overhead imposed by reverse network traffic from
the target to the source and the frequency of incremental
checkpointing. Recently, in a different context [4], simi-
lar mechanisms have been successfully used to provide high
availability.

4. IMPLEMENTATION DETAILS

We implemented post-copy along with all of the opti-
mizations described in Section 3 on Xen 3.2.1 and para-
virtualized Linux 2.6.18.8. We first discuss the different ways
of trapping page faults at the target within the Xen/Linux
architecture and their trade-offs. Then we will discuss our
implementation of dynamic self-ballooning (DSB).

4.1 Page Fault Detection

There are three ways by which the demand-paging com-
ponent of post-copy can trap page faults at the target VM.

(1) Shadow Paging: Shadow paging refers to a set of
read-only page tables for each VM maintained by the hy-
pervisor that maps the VM’s pseudo-physical pages to the
physical page frames. Shadow paging can be used to trap ac-
cess to non-existent pages at the target VM. For post-copy,
each major fault at the target can be intercepted via these
traps and be redirected to the source.

(2) Page Tracking: The idea here is to mark all of the
resident pages in the VM at the target as not present in
their page-table-entries (PTEs) during downtime. This has
the effect of forcing a page fault exception when the VM
accesses a page. After some third party services the fault,
the PTE can be fixed up to reflect accurate mappings. PTEs
in x86 carry a few unused bits to potentially support this,
but it requires significant changes to the guest kernel.

(3) Pseudo-paging: The idea here is to swap out all
pageable memory in the VM to an in-memory pseudo-paging
device within the guest kernel. This is done with minimal
overhead and without any disk 1/O. Since the source copy
of the VM is suspended at the beginning of post-copy mi-
gration, the memory reservation for the VM’s source copy
can be made to appear as a pseudo-paging device. During
resume time, the VM then retrieves its “swapped”-out pages
through its normal page fault servicing mechanism. In order

to service those faults, a modified block driver is inserted to
retrieve the pages over the network.

In the end, we chose to implement the pseudo-paging op-
tion because it was the quickest to implement. In fact, we at-
tempted page tracking first, but switched to pseudo-paging
due to implementation issues. Shadow paging can provide
an ideal middle ground, being faster than pseudo-paging but
slower (and cleaner) than page tracking. We intend to switch
to shadow paging soon. Our prototype doesn’t change much
except to make a hook available for post-copy to use. Re-
cently, SnowFlock [15] used this method in the context of
parallel cloud computing clusters using Xen.

The pseudo-paging approach is illustrated in Figure 4.
Page-fault detection and servicing is implemented through
the use of two loadable kernel modules, one inside the mi-
grating VM and one inside Domain 0 at the source node.
These modules leverage our prior work on a system called
MemX [10], which provides transparent remote memory ac-
cess for both Xen VMs and native Linux systems at the
kernel level. As soon as migration is initiated, the memory
pages of the migrating VM at the source are swapped out
to a pseudo-paging device exposed by the MemX module
in the VM. This “swap” is performed without copies using
a lightweight MFN exchange mechanism (described below),
after which the pages are mapped to Domain 0 at the source.
CPU state and non-pageable memory are then transferred to
the target node during downtime. Note the pseudo-paging
approach implies that a small amount of non-pageable mem-
ory, typically small in-kernel caches and pinned pages, must
be transferred during downtime. This increases the down-
time in our current post-copy implementation. The non-
pageable memory overhead can be significantly reduced via
the hybrid migration approach discussed earlier.

MFN Exchanges: Swapping the VM’s pages to a pseudo-
paging device can be accomplished in two ways: by either
transferring ownership of the pages to a co-located VM (like
Xen’s Domain 0) or by remapping the pseudo-physical ad-
dress of the pages within the VM itself with zero copying
overhead. We chose the latter because of its lower overhead
(fewer calls into the hypervisor). We accomplish the remap-
ping by executing an MFN exchange (machine frame number
exchange) within the VM. The VM’s memory reservation is
first doubled and all the running processes in the system
are suspended. The guest kernel is then instructed to swap
out each pageable frame (through the use of existing soft-
ware suspend code in the Linux kernel). Each time a frame
is paged, we re-write both the VM’s PFN (pseudo-physical
frame number) to MFN mapping (called a physmap) as well
as the frame’s kernel-level PTE such that we simulate an
exchange between the frame’s MFN with that of a free page
frame. These exchanges are all batched before invoking the
hypervisor. Once the exchanges are over, we memory-map
the exchanged MFNs into Domain 0. The data structure
needed to bootstrap this memory mapping is created within
the VM on-demand as a tree that is almost identical to a
page-table, from which the root is sent to Domain 0 through
the Xen Store.

Once the VM resumes at the target, demand paging be-
gins for missing pages. The MemX “client” module in the
VM at the target activates again to service major faults and
perform prepaging by coordinating with the MemX “server”
module in Domain 0 at the source. The two modules com-
municate via a customized and lightweight remote memory
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access protocol (RMAP) which directly operates above the
network device driver.

4.2 Dynamic Self Ballooning | mplementation

The implementation of DSB has three components. (1) In-
flate the balloon: A kernel-level DSB thread in the VM
first allocates as much free memory as possible and hands
those pages over to the hypervisor. (2) Detect mem-
ory pressure: Memory pressure indicates that some entity
needs to access a page frame right away. In response, the
DSB process must partially deflate the balloon depending
on the extent of memory pressure. (3) Deflate the bal-
loon: Deflation is the reverse of Step 1. The DSB process
re-populates it’s memory reservation with free pages from
the hypervisor and then releases the list of free pages back
to the guest kernel’s free pool.

Detecting Memory Pressure: In order to detect mem-
ory pressure in a completely transparent manner, we begin
by employing one of two mechanisms in the Linux Ker-
nel. First, we depend on the kernel’s existing ability to
perform physical memory overcommitment. Memory over-
commitment within an individual OS allows the virtual mem-
ory subsystem to provide the illusion of infinite physical
memory (as opposed to just infinite virtual memory only,
depending on the number of bits in the architecture of the
CPU). Linux, however, offers multiple operating modes of
physical memory overcommitment - and these modes can
be changed during runtime. By default, Linux disables this
feature, which precludes application memory allocations in
advance by returning an error. However if you enable over-
commitment, the kernel will return success. Without this,
we cannot detect memory pressure transparently.

Second, coupled with over-commitment, the kernel also
already provides a transparent mechanism to detect mem-
ory pressure: through the kernel’s filesystem API. Using a
function called “set_shrinker()”, one of the function pointers
provided as a parameter to this function acts as a callback to
some memory-hungry portion of the kernel. This indicates
to the virtual memory system that this function can be used
to request the deallocation of a requisite amount of mem-
ory that it may have pinned — typically things like inode
and directory entry caches. These callbacks are indirectly

driven by the virtual memory system as a result of copy-
on-write faults, satisfied on behalf of an application that
has allocated a large amount of memory and is accessing it
for the first time. DSB does not register a new filesystem,
but rather registers a similar callback function for the same
purpose. (It is not necessary to register a new filesystem
in order to register this callback). This worked remarkably
well and provides very precise feedback to the DSB process
about memory pressure. Alternatively, one could manually
scan /proc statistics to determine this information, but we
found the filesystem API to be more direct reflection of the
decisions that the virtual memory system is actually mak-
ing. Each callback contains a numeric value of exactly how
many pages the DSB should release, which typically defaults
to 128 pages at a time. When the callback returns, part of
the return value indicates to the virtual memory system how
much “pressure” is still available to be relieved. Filesystems
typically return the sum totals of their caches, whereas the
DSB process will return the size of the balloon itself.

Also, the DSB must periodically reclaim free pages that
may have been released over time. The DSB process per-
forms this sort of “garbage collection” by periodically waking
up and re-inflating the balloon as much as possible. Cur-
rently, we will inflate to 95% of all of the available free mem-
ory. (Inflating to 100% would trigger the “out-of-memory”
killer, hence the 5% buffer). If memory pressure is detected
during this time, the thread preempts any attempts to do
a balloon inflation and will maintain the size of the balloon
for a backoff period of about 10 intervals. As we show later,
an empirical analysis has shown that a ballooning interval
size of about 5 seconds has proven effective.

Lines of Code. Most of the post-copy implementation
is about 7000 lines within pluggable kernel modules. 4000
lines of that are part of the MemX system that is invoked
during resume time. 3000 lines contribute to the prepaging
component, the pushing component, and the DSB compo-
nent combined. A 200 line patch is applied to the migration
daemon to support ballooning and a 300-line patch is ap-
plied to the guest kernel so as to initiate pseudo-paging. In
the end, the system remains transparent to applications and
approaches about 7500 lines. Neither original pre-copy im-
plementation, nor the hypervisor is modified in any way.



4.3 Proactive LRU Ordering to I mprove Ref-
erence Locality

During normal operation, the guest kernel maintains the
age of each allocated page frame in its page cache. Linux,
for example, maintains two linked lists in which pages are
maintained in Least Recently Used (LRU) order: one for
active pages and one for inactive pages. A kernel daemon
periodically ages and transfers these pages between the two
lists. The inactive list is subsequently used by the paging
system to reclaim pages and write to the swap device. As
a result, the order in which pages are written to the swap
device reflects the historical locality of access by processes
in the VM. Ideally, the active push component of post-copy
could simply use this ordering of pages in its pseudo-paging
device to predict the page access pattern in the migrated
VM and push pages just in time to avoid network faults.
However, Linux does not actively maintain the LRU order-
ing in these lists until a swap device is enabled. Since a
pseudo-paging device is enabled just before migration, post-
copy would not automatically see pages in the swap device
ordered in the LRU order. To address this problem, we
implemented a kernel thread which periodically scans and
reorders the active and inactive lists in LRU order, without
modifying the core kernel itself. In each scan, the thread
examines the referenced bit of each page. Pages with their
referenced bit set are moved to the most recently used end
of the list and their referenced bit is reset. This mechanism
supplements the kernel’s existing aging support without the
requirement that a real paging device be turned on. Sec-
tion 5.4 shows that such a proactive LRU ordering plays a
positive role in reducing network faults.

5. EVALUATION

In this section, we present a detailed evaluation of post-
copy implementation and compare it against Xen’s pre-copy
migration. Our test environment consists of 2.8 GHz multi-
core Intel machines connected via a Gigabit Ethernet switch
and having between 4 to 16 GB of memory. Both the VM
in each experiment and the Domain 0 are configured to use
two virtual CPUs. Guest VM sizes range from 128 MB to
1024 MB. Unless otherwise specified, the default VM size is
512 MB. In addition to the performance metrics mentioned
in Section 3, we evaluate post-copy against an additional
metric. Recall that post-copy is effective only when a large
majority of the pages reach the target before they are faulted
upon by the VM at the target, in which case they become
minor page faults rather than major network page faults.
Thus the fraction of major faults compared to minor page
faults is another indication of the effectiveness of post-copy.

5.1 StressTesting

We start by first doing a stress test for both migration
schemes with the use of a simple, highly sequential memory-
intensive C program. This program accepts a parameter to
change the working set of memory accesses and a second
parameter to control whether it performs memory reads or
writes during the test. The experiment is performed in a
2048 MB VM with its working set ranging from 8 MB to
512 MB. The rest is simply free memory. We perform the
experiment with different test configurations:

1. Stop-and-copy Migration: This is a non-live mi-
gration which provides a baseline to compare the total
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Figure 5: Comparison of total migration times.

migration time and number of pages transferred.

2. Read-intensive Pre-Copy with DSB: This config-
uration provides the best-case workload for pre-copy.
The performance is expected to be roughly similar to
pure stop-and-copy migration.

3. Write-intensive Pre-Copy with DSB: This config-
uration provides the worst-case workload for pre-copy.

4. Read-intensive Pre-Copy without DSB:

5. Write-intensive Pre-Copy without DSB: These
two configurations test the default implementation of
pre-copy in Xen.

6. Read-intensive Post-Copy with and without DSB:

7. Write-intensive Post-Copy with and without DSB:

These four configurations will stress our prepaging al-
gorithm. Both reads and writes are expected to per-
form almost identically. DSB is expected to minimize
the transmission of free pages.

Total Migration Time: Figure 5 shows the variation of
total migration time with increasing working set size. No-
tice that both post-copy plots with DSB are at the bottom,
surpassed only by read-intensive pre-copy with DSB. Both
the read and write intensive tests of post-copy perform very
similarly. Thus our post-copy algorithm’s performance is ag-
nostic to the read or write-intensive nature of the application
workload. Furthermore, without DSB activated, the total
migration times are high for all migration schemes due to
unnecessary transmission of free pages.

Downtime: Figure 6 compares the metric of downtime as
the working set size increases. As expected, read-intensive
pre-copy gives the lowest downtime, whereas that for write-
intensive pre-copy increases as the size of the writable work-
ing set increases. For post-copy, recall that our choice of
pseudo-paging for page fault detection (in Section 4) in-
creases the downtime since all non-pageable memory pages
are transmitted during downtime. With DSB, post-copy
achieves a downtime that ranges between 600 milliseconds to
just over one second. However, without DSB, our post-copy
implementation experiences a large downtime of around 20
seconds because all free pages in the guest kernel are treated
as non-pageable pages and transferred during downtime.
Hence the use of DSB is essential to maintain a low down-
time with our current implementation of post-copy. This
limitation can be overcome by the use of shadow paging to
track page-faults.
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Figure 7: Comparison of the number of pages trans-
ferred during a single migration.

Working Prepaging | Pushing
Set Size | Net | Minor | Net | Minor
8 MB | 2% 98% [15% | 85%
16 MB | 4% 9%6% |[13% | 8%
32 MB | 4% 9%6% [13% | 8%
64 MB | 3% 97% |[10% | 90%
128 MB | 3% 97% 9% | 91%
256 MB | 3% 98% [10% | 90%

Table 2: Percent of minor and network faults for
pushing vs. prepaging.

Degradation Time: Kernel Compile

No Migration
Post -Copy

Pre -Copy wio DSB
Pre -Copy DSB

N w
a o
O o

[
o
o

=
a1
o

=
o
o

a
o
L

Completion Time (secs)

o
.

128 MB 256 MB 512 MB 1024 MB
Guest Memory (MB)

Figure 8: Degradation time with kernel compile.

Pages Transferred and Page Faults: Figure 7 and Ta-
ble 2 illustrate the utility of our prepaging algorithm in post-
copy across increasingly large working set sizes. Figure 7
plots the total number of pages transferred. As expected,
post-copy transfers far fewer pages than write-intensive pre-
copy. It performs on par with read-intensive post-copy and
stop-and-copy. Without DSB, the number of pages trans-
ferred increase significantly for both pre-copy and post-copy.
Table 14 compares the fraction of network and minor faults
in post-copy. We see that prepaging reduces the fraction of
network faults from 7% to 13%. To be fair, the stress-test is
highly sequential in nature and consequently, prepaging pre-
dicts this behavior almost perfectly. The real applications
in the next section do worse than this ideal case.

5.2 Degradation, Bandwidth, and Ballooning

Next, we quantify the side effects of migration on a cou-
ple of sample applications. We want to answer the following
questions: What kinds of slow-downs do VM workloads ex-
perience during pre-copy versus post-copy migration? What
is the impact on network bandwidth received by applica-
tions? And finally, what kind of balloon inflation interval
should we choose to minimize the impact of DSB on run-
ning applications? For application degradation and the DSB
interval, we use Linux kernel compilation. For bandwidth
testing we use the NetPerf TCP benchmark.

Degradation Time: Figure 8 depicts a repeat of an in-
teresting experiment from [19]. We initiate a kernel compile
inside the VM and then migrate the VM repeatedly between
two hosts. We script the migrations to pause for 5 sec-
onds each time. Although there is no exact way to quantify
degradation time (due to scheduling and context switching),
this experiment provides an approximate measure. As far
as memory is concerned, we observe that kernel compila-
tion tends not to exhibit too many memory writes. (Once
gee forks and compiles, the OS page cache will only be used
once more at the end to link the kernel object files together).
As a result, the experiment represents the best case for the
original pre-copy approach when there is not much repeated
dirtying of pages. This experiment is also a good worst-case
test for our implementation of Dynamic Self Ballooning due
to the repeated fork-and-exit behavior of the kernel com-
pile as each object file is created over time. (Interestingly
enough, this experiment also gave us a headache, because it
exposed the bugs in our code!) We were surprised to see how
many additional seconds were added to the kernel compila-
tion in Figure 8 just by executing back to back invocations of
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Figure 9: NetPerf run with back-to-back migrations.

pre-copy migration. Nevertheless, we observe that post-copy
closely matches pre-copy in the amount of degradation. This
is in line with the competitive performance of post-copy with
read-intensive pre-copy tests in Figures 5 and 7. We suspect
that a shadow-paging based implementation of post-copy
would perform much better due to the significantly reduced
downtime it would provide. Figure 9 shows the same exper-
iment using NetPerf. A sustained, high-bandwidth stream of
network traffic causes slightly more page-dirtying than the
compilation does. The setup involves placing the NetPerf
sender inside the VM and the receiver on an external node
on the same switch. Consequently, regardless of VM size,
post-copy actually does perform slightly better and reduce
the degradation time experienced by NetPerf.

Effect on Bandwidth: In the original paper [3], the Xen
project proposed a solution called “adaptive rate limiting” to
control the bandwidth overhead due to migration. However,
this feature is not enabled in the currently released version of
Xen. In fact it is compiled out without any runtime options
or any pre-processor directives. This could likely be because
rate-limiting increases the total migration time, or even be-
cause it is difficult, if not impossible, to predict beforehand
the bandwidth requirements of any single VM, on the basis
of which to guide adaptive rate limiting. We do not activate
rate limiting for our post-copy implementation either so as
to normalize the comparison of the two techniques.

With that in mind, Figures 10 and 11 show a visual rep-
resentation of the reduction in bandwidth experienced by a
high-throughput NetPerf session. We conduct this experi-
ment by invoking VM migration in the middle of a NetPerf
session and measuring bandwidth values rapidly through-
out. The impact of migration can be seen in both figures by
a sudden reduction in the observed bandwidth during mi-
gration. This reduction is more sustained, and greater, for
pre-copy than for post-copy due to the fact that the total
pages transferred in pre-copy is much higher. This is exactly
the bottom line that we were targeting for improvement.

Dynamic Ballooning Interval: Figure 12 shows how
we chose the DSB interval, by which the DSB process wakes
up to reclaim available free memory. With the kernel com-
pile as a test application, we execute the DSB process at
intervals from 10ms to 10s. At every interval, we script the
kernel compile to run multiple times and output the average
completion time. The difference in that number from the
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base case is the degradation time added to the application
by the DSB process due to its CPU usage. As expected, the
ballooning interval is inversely proportional to the applica-
tion degradation. The more often you balloon, the more it
affects the VM workload. The graph shows that an interval
between 4 and 10 seconds is good enough to frequently re-
claim free pages without impacting application performance.

5.3 Application Scenarios

We re-visit the aforementioned performance metrics across
four applications: (a) SPECWeb 2005: This is our largest
application. It is a well-known webserver benchmark in-
volving at least 2 or more physical hosts. We place the
system under test within the VM, while six separate client
nodes bombard the VM with connections; (b) Bit Torrent
Client: Although this is not a typical server application, we
chose it because it is a simple representative of a multi-peer
distributed application. It is easy to initiate and does not
immediately saturate a Gigabit Ethernet pipe. Instead, it
fills up the network pipe gradually, is slightly CPU inten-
sive, and involves a somewhat more complex mix of page-
dirtying and disk I/O than just a kernel compile. (c) Linux
Kernel Compile: We consider this application again for
consistency. (d) NetPerf: Once more, as in the previous
experiments, the NetPerf sender is placed inside the VM.
Using these applications, we evaluate the same four primary
metrics that we covered in Section 5.1: downtime, total mi-
gration time, pages transferred, and page faults. Each figure
for these applications represents one of the four metrics and
contains results for a constant, 512 MB virtual machine in
the form of a bar graph for both migration schemes across
each application. Each data point is the average of 20 sam-
ples. And just as before, the VM is configured to have two
virtual CPUs. All these experiments have DSB enabled.

Pages Transferred and Page Faults.. The experi-
ments in Figures 13 and 14 illustrate these results. For all
of the applications except the SPECWeb, post-copy reduces
the total pages transferred by more than half. The most sig-
nificant result we’ve seen so far is in Figure 14 where post-
copy’s prepaging algorithm is able to avoid 79% and 83%
of the network page faults (which become minor faults) for
the largest applications (SPECWeb, Bittorrent). For the
smaller applications (Kernel, NetPerf), we still manage to
save 41% and 43% of network page faults.

Total Time and Downtime. Figure 15 shows that post-
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copy reduces the total migration time for all applications,
when compared to pre-copy, in some cases by more than
50%. However, the downtime in Figure 16 is currently much
higher for post-copy than for pre-copy. As we explained ear-
lier, the relatively high downtime is due to our speedy choice
of pseudo-paging for page fault detection, which we plan to
reduce through the use of shadow paging. Nevertheless, this
tradeoff between total migration time and downtime may
be acceptable where network overhead needs to be kept low
and the entire migration needs to be completed quickly.

5.4 Comparison of Prepaging Strategies

This section compares the effectiveness of different prepag-
ing strategies. The VM workload is a Quicksort application
that sorts a randomly populated array of user-defined size.
We vary the number of processes running Quicksort from
1 to 128, such that 512MB of memory is collectively used
among all processes. We migrate the VM in the middle
of its workload execution and measure the number of net-
work faults during migration. A smaller the network fault
count indicates better prepaging performance. We compare
a number of prepaging combinations by varying the follow-
ing factors: (a) whether or not some form of bubbling is
used; (b) whether the bubbling occurs in forward-only or
dual directions; (c¢) whether single or multiple pivots are
used; and (d) whether the page-cache is maintained in LRU
order.

Figure 17 shows the results. Each vertical bar represents
an average over 20 experimental runs. First observation is
that bubbling, in any form, performs better than push-only
prepaging. Secondly, sorting the page-cache in LRU order
performs better than non-LRU cases by improving the lo-
cality of reference of neighboring pages in the pseudo-paging
device. Thirdly, dual directional bubbling improves perfor-
mance over forward-only bubbling in most cases, but never
performs significantly worse. This indicates that it is always
preferable to use dual directional bubbling. (The perfor-
mance of reverse-only bubbling was found to be much worse
than even push-only prepaging, hence its results are omit-
ted). Finally, dual multi-pivot bubbling is found to consis-
tently improve the performance over single-pivot bubbling
since it exploits locality of reference at multiple locations in
the pseudo-paging device.

6. CONCLUSIONS

This paper presented the design and implementation of a
post-copy technique for live migration of virtual machines.
Post-copy is a combination of four key components: de-
mand paging, active pushing, prepaging, and dynamic self-
ballooning. We implemented and evaluated post-copy on
Xen and Linux based platform. Our evaluations show that
post-copy significantly reduces the total migration time and
the number of pages transferred compared to pre-copy. Fur-
ther, the bubbling algorithm for prepaging is able to sig-
nificantly reduce the number network faults incurred dur-
ing post-copy migration. Finally, dynamic self-ballooning
improves the performance of both pre-copy and post-copy
by eliminating the transmission of free pages during migra-
tion. In future work, we plan to investigate an alternative
to pseudo-paging, namely shadow paging based page fault
detection. We are also investigating techniques to handle
target node failure during post-copy migration, so that post-
copy can provide at least the same level of reliability as pre-
copy. Finally, we are implementing a hybrid pre/post copy
approach where a single round of pre-copy precedes the CPU
state transfer, followed by a post-copy of the remaining dirty
pages from the source.
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